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Abstract
The Gibbs–Thomson coefficient and solid–liquid interfacial energy of the
solid Mg2Zn11 phase in equilibrium with Zn–Mg eutectic liquid have been
determined to be (3.3 ± 0.2) × 10−8 K m and (20.8 ± 2.1) × 10−3 J m−2 from
the equilibrated grain boundary groove shapes with a numerical model. The
grain boundary energy of the solid Mg2Zn11 phase has been calculated to be
(40.9 ± 4.5)× 10−3 J m−2 by considering a force balance at the grain boundary
grooves. The thermal conductivity ratio of the eutectic Zn–Mg liquid phase to
the solid Mg2Zn11 phase has also been found to be 0.81.

1. Introduction

The solid–liquid interfacial energy, σSL, is the reversible work required to form or to extend
a unit area of interface between a crystal and its coexisting liquid at constant temperature,
volume and chemical potential and plays a central role in determining the nucleation rate
and growth morphology of the crystal [1–4]. Thus, a quantitative knowledge of σSL values
is necessary. The measurement of σSL in pure materials and alloys is difficult. Over the last
half-century, various attempts have been made to determine the mean value of the solid–liquid
interfacial free energy in a variety of materials [1–30]. One of the common techniques for
measuring the solid–liquid interfacial free energy is the method of grain boundary grooving in
a temperature gradient. In this technique, the solid–liquid interface is equilibrated with a grain
boundary in a temperature gradient as shown in figure 1, and the mean value of solid–liquid
interfacial free energy is obtained from measurements of the equilibrium shape of the groove
profile. The grain boundary groove method is the most useful and powerful technique at present
available for measuring the solid–liquid interface energy and can be applied to measure σSL for
multi-component systems as well as pure materials, for opaque materials as well as transparent
materials, for any observed grain boundary groove shape and for any R = KL/KS value. Over
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Figure 1. Schematic illustration of an equilibrated grain boundary groove formed at a solid–liquid
interface in a temperature gradient showing the x , y coordinates and angle θ .

last 25 years, the equilibrated grain boundary groove shapes in a variety of materials have been
observed and measurements of the solid–liquid interfacial free energies made from the observed
grain boundary groove shapes [7–30].

In order for a transformation to occur going from the liquid state to the solid state, a
material must be held at a temperature TI which is below the melting temperature, Tm. The
system is then said to be undercooled by an amount �T = Tm − TI. The transformation from
liquid to solid does not occur at the melting temperature, Tm. In a binary alloy, the value of TI

is dependent on the interface curvature, the composition of the liquid and the energy barrier to
atoms going from liquid to solid. The undercooling, �T , can be given by [31]

�T = �Ts + �Tk + �Tr (1)

where �Ts is the solute undercooling, �Tk is the kinetic undercooling and �Tr is the curvature
undercooling.

In all materials there is an energy barrier to the transfer of atoms from the solid to the
liquid phase and vice versa. The solid grows if there is a net transfer of atoms from the liquid
to the solid, and this occurs only if the interface is cooled below its melting temperature. This
undercooling is called the kinetic undercooling, �Tk. The liquid phase grows (melting occurs)
if there is a net transfer of atoms from the solid to the liquid phase. If the net transfer of atoms
is zero, the system is then said to be at equilibrium. The kinetic undercooling, �Tk, will be zero
at the equilibrium condition for both a one-component system and multi-component systems.

The solute undercooling, �Ts, is the due to the difference in the liquid composition at the
interface and a reference temperature. When the solid–liquid interface is equilibrated with a
grain boundary in a temperature gradient, the shape of a grain boundary groove is formed by
the intersection of planar grain boundaries with an otherwise planar solid–liquid interface as
shown in figure 1. At the equilibrium conditions, the value of �Ts will be zero because the
composition gradient at the interface is zero.

Thus the total undercooling for a curved interface as shown in figure 1 is equal to the
curvature undercooling, i.e. �T = �Tr at equilibrium conditions. The curvature undercooling,
�Tr, is the temperature difference between the temperature of the flat interface (T0) and the
temperature of the curved interface (Tr). The Gibbs–Thomson undercooling is given by the
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following equation for the anisotropic interfacial energy [4]:

�Tr =
[

1

�Sf

] [(
σSL + d2σSL

dn2
1

)
κ1 +

(
σSL + d2σSL

dn2
2

)
κ2

]
(2)

where �Sf is the entropy of fusion per unit volume, n = (nx , ny, nz) is the interface normal, κ1

and κ2 are the principal curvatures, and the derivatives are taken along the directions of principal
curvature. Thus, the curvature undercooling, �Tr, is a function of curvature, interfacial free
energy and the second derivative of the interfacial free energy. Equation (2) is valid only if the
interfacial free energy per unit area is equal to surface tension per unit length, σSL = γ [4].
When the interfacial energy differs from surface tension, the problem is more complicated and
the precise modification of the Gibbs–Thomson equation is not yet established [4]. When the
solid–liquid interfacial free energy is isotropic, equation (2) becomes

�Tr = σSL

�Sf

(
1

r1
+ 1

r2

)
(3)

where r1 and r2 are the principal radii of curvature. For the case of a planar grain boundary
intersecting a planar solid–liquid interface, r2 = ∞ and the equation (3) becomes

� = r�Tr = σSL

�Sf
(4)

where � is the Gibbs–Thomson coefficient and r is the radius of the groove profile as shown in
figure 1. This equation is called the Gibbs–Thomson equation for a curved interface having an
isotropic solid–liquid interfacial energy and is useful for considering the effect of solid–liquid
interfacial energy on solidification and melting as it expresses the effective change in melting
point for a curved interface. At present the most powerful method for measuring solid–liquid
interfacial energy experimentally uses the Gibbs–Thomson equation. Equation (4) may be
integrated in the y direction (perpendicular to the macroscopic interface from the flat interface
to a point on the cusp):∫ y

0
�Tr dy = �

∫ y

0

1

r
dy. (5)

The right-hand side of equation (5) may be evaluated for any shape by defining ds = rdθ

(s is the distance along the interface and θ is the angle of the interface to y as shown in figure 1)
giving ∫ y

0

1

r
dy = (1 − sin θ). (6)

The left-hand side of equation (5) may be evaluated if �Tr is known as a function of y.
The left-hand side of equation (5) was integrated numerically using the values of �Tr

calculated numerically and the right-hand side of equation (5) was evaluated by measuring
the value of θ (obtained by fitting a Taylor expansion to the adjacent points on the cusp) by
Gündüz and Hunt [15, 16]. This allows the Gibbs–Thomson coefficient to be determined for
a measured grain boundary groove shape. This numerical method calculates the temperature
along the interface of a measured grain boundary groove shape rather than attempting to predict
the equilibrium grain boundary groove shape. The shape of the interface, the temperature
gradient in the solid, GS, and the ratio of thermal conductivity of the liquid phase to solid
phase, R = KL/KS, must be known or measured to get accurate values for the Gibbs–Thomson
coefficient with the Gündüz and Hunt numerical method [15].

No previous attempt has been made to measure the solid–liquid interfacial energy of the
solid Mg2Zn11 phase from the observed grain boundary groove shapes in the Zn–Mg system.
Therefore the aim of the present work is to determine the Gibbs–Thomson coefficient, solid–
liquid interfacial energy and grain boundary energy of the solid Mg2Zn11 phase in equilibrium
with Zn–Mg eutectic liquid from the observed grain boundary groove shapes.
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Figure 2. A binary eutectic equilibrium phase diagram.

2. Experimental procedure

2.1. Sample production

The equilibrated solid Mg2Zn11 phase in equilibrium with Zn–Mg eutectic liquid has been
observed from the quenched samples by a radial heat flow apparatus originally designed by
Gündüz and Hunt [15, 16]. The details of the apparatus and experimental procedures are given
in [15–17].

Consider a binary eutectic system as shown in figure 2. Above the eutectic temperature,
a binary eutectic system consists of solid and liquid provided the alloy composition, Cα <

C0 < CE or CE > C0 < Cβ , where CE, Cα and Cβ are the composition of the eutectic, solid
α and solid β phases, respectively. If this eutectic system is held in a very stable temperature
gradient, the liquid droplets move up the temperature gradient by temperature gradient zone
melting (TGZM) and a single solid can grow on the eutectic structure during the annealing
period. When the composition of alloy is far from the eutectic composition, the experiment
usually needs a long time to reach equilibrium due to a larger freezing range. If the alloy
composition is near the eutectic composition, above the eutectic temperature, a binary eutectic
system consists of liquid. If this system is held in a very stable temperature gradient there will
be no liquid droplets behind the solid phase and two solid phases can grow together on the
eutectic structure. The equilibration time for this system should be shorter because of the small
freezing range.

In the present work the composition of alloys was chosen to be Zn–8 at.% Mg to grow
the single solid Zn and Zn2Mg11 phases from the eutectic liquid on the eutectic structures.
Zn–8 at.% Mg alloy was prepared in a vacuum furnace by using 99.99% pure zinc and 99.9%
pure magnesium. After stirring, the molten alloy was poured into a graphite crucible held in a
specially constructed casting furnace at approximately 50 K above the melting point of alloy.
The molten metal was then directionally frozen from bottom to top to ensure that the crucible
was completely full. The sample was then placed in the radial heat flow apparatus.

The experiments were carried out in two steps. In the first step the thermocouples were
calibrated by detecting the melting point during very slow heating and cooling using the lower
temperature gradient operational mode. In the second step, the specimen was heated from
the centre using a single heating wire (1.7 mm in diameter, Kanthal A-1) and the outside
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of the specimen was kept cool with a water cooling jacket. A thin liquid layer (1–2 mm
thick) was melted around the central heater and the specimen was annealed in a very stable
temperature gradient for a long time. The annealing time for the Zn–8 at.% Mg alloy was 7
days. During the annealing period, the temperature in the specimen and the vertical temperature
variations on the sample were continuously recorded by the stationary thermocouples and a
moveable thermocouple, respectively, and the input power was recorded periodically. During
the experiment, the specimen was kept in a slightly positive pressure of argon to prevent
graphite erosion. The temperature in the sample was stable to about ±0.025 K for hours
and ±0.05 K for up to 7 days. At the end of the annealing time the specimen was rapidly
quenched by turning off the input power which is sufficient to get a well defined solid–liquid
interface, because the liquid layer around the central heating wire was very thin (typically less
than 0.5–1 mm).

2.2. Measurements of the coordinates of equilibrated grain boundary groove shapes

The quenched sample was cut transversely into lengths of typically 25 mm and transverse
sections were ground flat with 180-grit SiC paper. Grinding and polishing were then carried
out by following the standard route. After polishing, the samples were etched with a 0.4 g
NaSO4 and 5 g CrO3 in 100 ml water enchant for 2 s.

The equilibrated grain boundary groove shapes were then photographed with a CCD digital
camera placed in conjunction with an Olympus BH2 light optical microscope using a 20×
objective. A graticule (200 × 0.01 = 2 mm) was also photographed using the same objective.
The photographs of the equilibrated grain boundary groove shapes and the graticule were
superimposed on one another using Adobe PhotoShop version 8.0 software so that accurate
measurement of the groove coordinate points on the groove shapes could be made.

2.3. Geometrical correction for the groove coordinates

The coordinates of the cusp, x , y should be measured using the coordinates x , y, z where the x
axis is parallel to the solid–liquid interface, the y axis is normal to the solid–liquid interface and
the z axis lies at the base of the grain boundary groove as shown in figure 3(a). The coordinates
of the cusp x ′, y ′ from the metallographic section must be transformed to the x , y coordinates.
Maraşlı and Hunt [17] devised a geometrical method to make appropriate corrections to the
groove shapes and details of the geometrical method are given in [17].

The relation between x and x ′ can be expressed as [17]

x = x ′ cos α

x = x ′
√

a2 + d2

√
a2 + b2 + d2

(7)

and the relation between y and y ′ can be expressed as [17]

y = y ′ cos β

y = y ′ d√
a2 + d2

(8)

where d is the distance between the first and second plane along the z ′ axis, b is the
displacement of the grain boundary position along the x ′ axis, a is the displacement of the
solid–liquid interface along the y ′ axis, α is the angle between the x ′ axis and the x axis, and
β is the angle between the y ′ axis and the y axis as shown in figure 3. In this work, the values
of a, b and d were measured in order to transform the cusp coordinates x ′, y ′ into the x , y
coordinates as follows.
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Figure 3. (a) Schematic illustration of the relationship between the actual coordinates, x , y, and
the measured coordinates, x ′, y′, of the groove shape. (b) Schematic illustration for the metallic
examination of the sample where B is the location of the grain boundary groove shape onto first
plane OJFA, C is the location of the grain boundary groove shape onto second plane HIDC, AB = b,
CG = ED = a and AG = d. (c) Schematic illustration of the displacement of the grain boundary
groove shape position along the x ′ and y′ axis [17].

Two perpendicular reference lines (≈0.1 mm thick and 0.1 mm deep) were marked near
the grain boundary groove on the polished surface of sample (figure 3(c)). The samples were
then polished and the grain boundary groove shapes were photographed. The thickness of the
sample d1 was measured with a digital micrometer (with resolution 1 μm) at several points
of the sample to obtain the average value. After thickness measurements had been made the
sample was again polished to remove a thin layer (at least 40–50 μm) from the sample surface.
The same grain boundary groove shapes were again photographed and the thickness of the
sample d2 was measured with the same micrometer. The difference between these sample
thicknesses, d = d1 − d2, gave the layer removed from the sample surface. The photographs of
the grain boundary groove shapes were superimposed on one another using Adobe PhotoShop
version 8.0 software to measure the displacement of the solid–liquid interface along the y ′ axis
and the displacement of the grain boundary groove position along the x ′ axis (see figure 3(b)).
Thus the required a, b and d measurements were made so that appropriate corrections to the
shape of the grooves could be deduced [17].
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The coordinates of the equilibrated grain boundary groove shapes were measured with
an optical microscope to an accuracy of ±10 μm. The thickness of the sample (2–
2.5 cm lengths) for geometrical correction was measured with a digital micrometer which has
±1 μm resolution. Thus the uncertainty in the measurements of equilibrated grain boundary
coordinates was less than 0.2%.

2.4. Thermal conductivities of the solid and liquid phases

The thermal conductivity ratio of the eutectic liquid phase (Zn–7.8 at.% Mg) to the solid
Mg2Zn11 phase (Zn–15.4 at.% Mg alloy), R = KL(eutectic liquid)/KS(solid intermetallic) must be
known or measured to evaluate the Gibbs–Thomson coefficients with the present numerical
method. The radial heat flow apparatus is an ideal technique for measuring the thermal
conductivity of the solid phases.

From Fourier’s law, the thermal conductivity of the solid phases at the steady-state
conditions can be expressed as

KS = 1

2π�
ln

(
r2

r1

)
Q

T1 − T2
(9)

where r1 and r2 are fixed distances from the centre of the sample and T1 and T2 are the
temperatures at the fixed positions r1 and r2.

Equation (9) could be used to give the conductivity by measuring the difference in
temperature between the two fixed points for a given power level. The difficulty with this is that
the error in the calibration of the two thermocouples is likely to be as large as the difference in
temperatures. The problem was overcome by measuring the difference in the temperatures for
two different power levels and increasing the distance between two thermocouples to 15 mm.

For two different power levels, Q1 and Q2, equation (9) can be written as

KS = 1

2π�
ln

(
r2

r1

)
�Q

�T1 − �T2
(10)

where �Q is the difference in input power and �T1 and �T2 are the temperature differences
at r1 and r2. This means that the thermal conductivity can be measured accurately even though
the absolute temperatures are not known, provided that the vertical temperature variation is
minimal or zero.

The thermal conductivities of the solid Mg2Zn11 (Zn–15.4 at.% Mg) and the eutectic solid
(Zn–7.8 at.% Mg) were measured in the radial heat flow apparatus. The alloys were prepared
in a vacuum furnace by using 99.99% pure zinc and 99.9% pure magnesium. The sample
was heated using the central heating wire in steps of 20 K, from 373.2 K up to 5 K below
the eutectic temperature (639.3 K). The samples were kept at steady-state for at least 2 h. At
the steady-state condition, the total input power, vertical temperature variations on the sample
and the temperatures in the sample were measured. When all desired power and temperature
measurements had been completed the sample was left to cool down to room temperature.
Also to obtain values of KS as a function of temperature it was assumed that conductivity was
constant over the interval between two temperature differences.

The thermal conductivities of the solid phases versus temperature are shown in figure 4.
The values of KS for the solid Mg2Zn11 and the eutectic solid at their melting point were
obtained to be 140.7 and 138.7 W K−1 m−1, respectively, by extrapolating to the eutectic
temperature as shown in figure 4. The values of thermal conductivities used in the calculations
are given in table 1.

It is not possible to measure the thermal conductivity of the liquid phase with the radial
heat flow apparatus since a thick liquid layer (10 mm) is required. A layer of this size would
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Figure 4. Thermal conductivities
of the eutectic solid phase (Zn–
7.8 at.% Mg), the solid Mg2Zn11

phase (Zn–15.4 at.% Mg), pure
Zn [32] and pure Mg [32].

Table 1. Thermal conductivities of solid and liquid phases and their ratios at the eutectic
temperature (639.3 K) for the Zn–7.8 at.% Mg and Zn–15.4 at.% Mg alloys.

System Phase Temperature (K) K (W K−1 m−1) R = K L/K S

Zn–Mg

Liquid (Zn–7.8 at.% Mg) 639.3 113.7
0.82

Solid (Zn–7.8 at.% Mg) 639.3 138.7
Liquid (Zn–7.8 at.% Mg) 639.3 113.7

0.81
Solid Mg2Zn11 (Zn–15.4 at.% Mg) 639.3 140.7

certainly have led to convection. If the thermal conductivity ratio of the liquid phase to the
solid phase is known and the thermal conductivity of the solid phase is measured at the melting
temperature, the thermal conductivity of the liquid phase can then be evaluated. The thermal
conductivity ratio can be obtained during directional growth with a Bridgman type growth
apparatus. The heat flow away from the interface through the solid phase must balance that in
the liquid phase plus the latent heat generated at the interface, i.e. [33]

V L = KSGS − KLGL (11)

where V is the growth rate, L is the latent heat, GS and GL are the temperature gradients in the
solid and liquid, respectively, and KS and KL are the thermal conductivities of solid and liquid
phases, respectively. For very low velocities, V L � KSGS, so that the conductivity ratio, R is
given by

R = KL

KS
= GS

GL
. (12)

A directional growth apparatus, first constructed by McCartney [34], was used to find
out the thermal conductivity ratio, R = KL/KS. A thin walled graphite crucible, 6.3 mm
OD × 4 mm ID × 180 mm long, was used to minimize convection in the liquid phase.

Molten Zn–7.8 at.% Mg alloy was poured into the thin walled graphite tube and the
molten alloy was then directionally frozen from bottom to top to ensure that the crucible
was completely full. The specimen was then placed in the directional growth apparatus. The
specimen was heated to 50 K over the melting temperature of alloy. The specimen was then left
to reach thermal equilibrium for at least 2 h. The temperature in the specimen was measured
with an insulated K type thermocouple. In the present work, a 1.0 mm OD × 0.5 mm ID
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Figure 5. Temperature change versus
time for the Zn–7.8 at.% Mg eutectic
alloy.

alumina tube was used to insulate the thermocouple from the melts and the thermocouple
was placed perpendicular to the heat flow (growth) direction. At the end of equilibration, the
temperature in the specimen was stable to ±0.5 K for a short-term period and to ±1 K for a
long-term period. When the specimen temperature stabilized, the directional growth was begun
by turning the motor on. The cooling rate was recorded with a data logger via a computer. In the
present measurements, the growth rate was 8.3×10−4 cm s−1. When the solid–liquid interface
passed the thermocouple, a change in the slope of the cooling rate for liquid and solid phases
was observed. When the thermocouple reading was approximately 30 K below the melting
temperature, the growth was stopped by turning the motor off.

The conductivity ratio can be evaluated from the cooling rate ratio of the liquid phase to
the solid phase. The cooling rate of the liquid and solid phases is given by(

dT

dt

)
L

=
(

dT

dx

)
L

(
dx

dt

)
L

= GLV (13)

and (
dT

dt

)
S

=
(

dT

dx

)
S

(
dx

dt

)
S

= GSV . (14)

From equations (12)–(14), the conductivity ratio can be written as

R = KL

KS
= GS

GL
=

(
dT
dt

)
S(

dT
dt

)
L

(15)

where (dT/dt)S and (dT/dt)L values were directly measured from the temperature versus time
curve shown in figure 5. The thermal conductivity ratio of the eutectic liquid phase to the
eutectic solid phase, Reutectic = KL(eutectic)/KS(eutectic) was found to be 0.82 as shown in figure 5.
The value of KL(eutectic) was obtained to be 113.7 W K−1 m−1 by using the values of Reutectic

and KS(eutectic). Thus the thermal conductivity ratio of the eutectic liquid phase to the solid
Mg2Zn11 phase, R = KL(eutectic liquid)/KS(solid intermetallic) was obtained to be 0.81 and is also
given in table 1.

The estimated experimental error in the measurement of KS is sum of the fractional
uncertainty of the measurements of power, temperature difference, length of heating wire and
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thermocouple positions which can be expressed as∣∣∣∣�Ks

Ks

∣∣∣∣ =
∣∣∣∣�(Qb − Qa)

Qb − Qa

∣∣∣∣ +
∣∣∣∣∣
�

(
(T b

1 − T a
1 ) − (T b

2 − T a
2 )

)
(T b

1 − T a
1 ) − (T b

2 − T a
2 )

∣∣∣∣∣ +
∣∣∣∣�l

l

∣∣∣∣ +
∣∣∣∣�r1

r1

∣∣∣∣ +
∣∣∣∣�r2

r2

∣∣∣∣ .
(16)

The estimated error in the thermal conductivity measurements is about 5% [35].

2.5. Temperature gradient measurement in the solid phase

The cylindrical sample was heated from the centre by a thin heating wire and a thin liquid layer
was melted around the central heating element. The steady-state the temperature gradient at
radius r is given by

GS = dT

dr
= − Q

2πr�KS
(17)

where Q is the input power, � is the length of the heating element, r is the distance of the
solid–liquid interface to the centre of the sample and KS is the thermal conductivity of the solid
phase.

The average temperature gradient of the solid phase must be determined for each grain
boundary groove shape. This was done by measuring the input power, the length of heating
element and the position of the solid–liquid interface and the value of KS for the solid Mg2Zn11

phase at the melting point. By using these measured values in equation (17), the temperature
gradient can be determined for each grain boundary groove shape.

The estimated experimental error in the measurement of temperature gradient is the sum
of the fractional uncertainty of the measurements of power, length of heating wire, thermal
conductivity and thermocouple positions which can be expressed as∣∣∣∣�GS

GS

∣∣∣∣ =
∣∣∣∣�Q

Q

∣∣∣∣ +
∣∣∣∣��

�

∣∣∣∣ +
∣∣∣∣�r

r

∣∣∣∣ +
∣∣∣∣�KS

KS

∣∣∣∣ . (18)

If equation (18) is compared with equation (16), the experimental errors coming from the
measurements of Q, �, r�T in equation (18) already exist in the fractional uncertainties in
equation (16). Thus the total experimental error in the thermal gradient measurements is equal
to the experimental error in thermal conductivity measurements, and is about 5%.

3. Results and discussion

3.1. Determination of the Gibbs–Thomson coefficient

If the thermal conductivity ratio of the liquid phase to the solid phase, the coordinates of the
grain boundary groove shapes and the temperature gradient of the solid phase are known,
the Gibbs–Thomson coefficient (�) can be obtained using the numerical method described
in detail [15]. The experimental error in the determination of the Gibbs–Thomson coefficient
is the sum of experimental errors in the measurements of the temperature gradient, thermal
conductivity and groove coordinates. Thus the total error in the determination of the Gibbs–
Thomson coefficient is about 5%.

In the present work, the Gibbs–Thomson coefficients for the solid Mg2Zn11 in equilibrium
with Zn–Mg eutectic liquid were determined with the present numerical model by using ten
equilibrated grain boundary groove shapes. The grooves examined in this system are shown in
figure 6. As can be seen from figure 6, a solid Zn phase (Zn–0.4 at.% Mg) first nucleates on the
surface of the solid Mg2Zn11 phase, then both solid Zn and Mg2Zn11 phases grow together to
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Table 2. Gibbs–Thomson coefficients for the solid Mg2Zn11 in equilibrium with Zn–Mg eutectic
liquid. The subscripts LHS and RHS refer to left-hand side and right-hand side of the grooves,
respectively. Note: �̄ = (3.3 ± 0.2) × 10−8 K m.

Gibbs–Thomson coefficient

Groove no GS × 102 (K m−1) α (deg) β (deg) �LHS × 10−8 (K m) �RHS × 10−8 (K m)

a 11.9 14.7 11.4 3.3 3.3
b 12.0 21.3 14.1 3.0 3.4
c 12.4 5.3 26.4 3.1 3.5
d 12.0 2.3 30.2 3.2 3.1
e 12.0 14.0 11.0 3.1 3.0
f 12.1 5.6 16.7 3.3 3.6
g 12.1 20.4 14.7 3.1 3.5
h 12.1 15.8 13.3 3.1 3.7
i 12.2 20.3 27.7 3.3 3.8
j 12.0 15.7 12.0 3.1 3.6

form a eutectic grain. This allows a well defined and fixed solid–liquid interface to be observed
during the quench and also the phases, grains and interfaces of the system are very clear. The
values of � for solid Mg2Zn11 are given in table 2. The average value of � from table 2 is
(3.3 ± 0.2) × 10−8 K m for solid Mg2Zn11.

3.2. Determination of entropy of fusion per unit volume

It is also necessary to know the entropy of fusion per unit volume, �Sf, for the solid phase to
determine the solid–liquid interfacial energy. For pure materials the entropy of fusion per unit
volume is given by

�Sf = �HM

TM

1

VS
(19)

where �HM is the enthalpy change of the solid phase at the melting temperature, TM is the
melting temperature and VS is the molar volume of the solid phase.

The entropy change for an alloy is given by [15],

�Sf = (1 − CS)(SL
A − SS

A) + CS(SL
B − SS

B)

VS
(20)

where SL
A, SS

A, SL
B and SS

B are partial molar entropies for materials A and B and CS is the
composition of the solid. Since the entropy terms are generally not available, for convenience
the undercooling at constant composition may be related to the change in composition at
constant temperature. For a sphere [36]

�Cr = 2σSLVS(1 − CL)CL

r RTM(CS − CL)
(21)

where R is the gas constant. For small changes

�Tr = mL�Cr = 2 mLσSLVS(1 − CL)CL

r RTM(CS − CL)
. (22)

For a spherical solid r1 = r2 = r , and from equation (3) the curvature undercooling is
written as

�Tr = 2σSL

r�Sf
. (23)

11



J. Phys.: Condens. Matter 19 (2007) 176003 M Erol et al

Figure 6. Typical grain boundary groove shapes for the solid Mg2Zn11 in equilibrium with the
Zn–Mg eutectic liquid.

12



J. Phys.: Condens. Matter 19 (2007) 176003 M Erol et al

Table 3. Some physical properties of the solid Mg2Zn11 phase at the eutectic temperature.

System Zn–Mg
Composition of the quenched liquid phase, CL Zn–7.8 at.% Mg [37]
Composition of solid Mg2 Zn11 phase, CS Zn–15.4 at.% Mg [37]
f (C)a −1.081
Eutectic melting temperature, Tm (K) 639.28
Molar volume of solid Mg2Zn11, Vs (m3) 9.648 × 10−6 [38]
Liquidus slope, mL (K/ at. fr) 948.62

Entropy change of fusion, �Sf (J K−1 m
−3

) 6.28 × 105

a f (C) = CS−CL
(1−CL) CL

.

From equations (22) and (23), the entropy change for an alloy is written as

�Sf = RT M

mLVS

CS − CL

(1 − CL) CL
. (24)

The values of the relevant constant obtained from [37, 38] and the calculated entropy
change of fusion per unit volume are given in table 3. The error in the determined entropy
change of fusion per unit volume is estimated to be about 5% [39].

3.3. Evaluation of solid–liquid interfacial energy

If the values of � and �Sf are known the value of the solid–liquid interfacial energy, σSL, can be
evaluated from equation (3). The solid–liquid interfacial energy of the solid Mg2Zn11 phase in
equilibrium with the Zn–Mg eutectic liquid was evaluated to be (20.8±2.1)×10−3 J m−2 using
the values of � and �Sf. The experimental error in the determined solid–liquid interface energy
is the sum of experimental errors of the Gibbs–Thomson coefficient and the entropy change of
fusion per unit volume. Thus, the total experimental error for the solid–liquid interfacial energy
evaluation in present work is about 10%.

3.4. Grain boundary energy

If the grains on either side of the interface are the same phase then the grain boundary energy
can be expressed by

σgb = 2σSL cos θ (25)

where θ = θA+θB
2 is the angle that the solid–liquid interfaces make with the y axis [40]. The

angles θA and θB were obtained from the cusp coordinates, x , y, using a Taylor expansion for
parts at the base of the groove. According to equation (25), the value of σgb should be smaller
than or equal to twice the solid–liquid interface energy, i.e. σgb � 2σSL.

The value of the grain boundary energy for the solid Mg2Zn11 phase was found to be
(40.9 ± 4.5) × 10−3 J m−2 using the values of σSL and θ in equation (25). The estimated error
in determination of angles θ was found to be 1%. Thus the total experimental error in the
resulting grain boundary energy is about 11%.

4. Conclusion

The equilibrated grain boundary groove shapes of the solid Mg2Zn11 phase in equilibrium
with the Zn–Mg eutectic liquid have been observed from the quenched samples with a radial
heat flow apparatus. From the observed grain boundary groove shapes, the Gibbs–Thomson

13
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coefficient, solid–liquid interfacial energy and the grain boundary energy of the solid Mg2Zn11

phase in equilibrium with the Zn–Mg eutectic liquid have been determined. The thermal
conductivity ratio of the equilibrated the Zn–Mg eutectic liquid to the solid Mg2Zn11 phase
has also been measured.
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